Guided Rule Discovery in XCS for High-Dimensional Classification Problems
نویسندگان
چکیده
XCS is a learning classifier system that combines a reinforcement learning scheme with evolutionary algorithms to evolve a population of classifiers in the form of condition-action rules. In this paper, we investigate the effectiveness of XCS in high-dimensional classification problems where the number of features greatly exceeds the number of data instances – common characteristics of microarray gene expression classification tasks. We introduce a new guided rule discovery mechanisms for XCS, inspired by feature selection techniques commonly used in machine learning. The extracted feature quality information is used to bias the evolutionary operators. The performance of the proposed model is compared with the standard XCS model and a number of well-known machine learning algorithms using benchmark binary classification tasks and gene expression data sets. Experimental results suggests that the guided rule discovery mechanism is computationally efficient, and promotes the evolution of more accurate solutions. The proposed model performs significantly better than comparative algorithms when tackling high-dimensional classification problems.
منابع مشابه
An enhanced XCS rule discovery module using feature ranking
XCS is a genetics-based machine learning model that combines reinforcement learning with evolutionary algorithms to evolve a population of classifiers in the form of condition-action rules. Like many other machine learning algorithms, XCS is less effective on high-dimensional data sets. In this paper, we describe a new guided rule discovery mechanisms for XCS, inspired by feature selection tech...
متن کاملCan Evolution Strategies Improve Learning Guidance in XCS? Design and Comparison with Genetic Algorithms based XCS
XCS is a complex machine learning technique that combines credit apportionment techniques for rule evaluation with genetic algorithms for rule discovery to evolve a distributed set of sub-solutions online. Recent research on XCS has mainly focused on achieving a better understanding of the reinforcement component, yielding several improvements to the architecture. Nonetheless, studies on the ru...
متن کاملThe Introduction of a Heuristic Mutation Operator to Strengthen the Discovery Component of XCS
The extended classifier systems (XCS) by producing a set of rules is (classifier) trying to solve learning problems as online. XCS is a rather complex combination of genetic algorithm and reinforcement learning that using genetic algorithm tries to discover the encouraging rules and value them by reinforcement learning. Among the important factors in the performance of XCS is the possibility to...
متن کاملIncorporating feature ranking and evolutionary methods for the classification of high-dimensional DNA microarray gene expression data.
BACKGROUND DNA microarray gene expression classification poses a challenging task to the machine learning domain. Typically, the dimensionality of gene expression data sets could go from several thousands to over 10,000 genes. A potential solution to this issue is using feature selection to reduce the dimensionality. AIMS The aim of this paper is to investigate how we can use feature quality ...
متن کاملThe Introduction of a Heuristic Mutation Operator to Strengthen the Discovery Component of XCS
The extended classifier systems (XCS) by producing a set of rules is (classifier) trying to solve learning problems as online. XCS is a rather complex combination of genetic algorithm and reinforcement learning that using genetic algorithm tries to discover the encouraging rules and value them by reinforcement learning. Among the important factors in the performance of XCS is the possibility to...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011